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Abstract—The glycosylation of alcohols, phenol, and partially protected monosaccharides with the diastereoisomeric p-allal and p-galactal-
derived N-nosyl aziridines 2« and 2B leads to the corresponding 4-N-(nosylamino)-2,3-unsaturated-o.-O- (6ot) and B-O-glycosides and
disaccharides (6f), respectively, in a stereospecific substrate-dependent O-glycosylation process. The N-(nosylamino) group of 6a and
6B can easily be deprotected to give the corresponding 4-amino-2,3-unsaturated-O-glycosides 7ot and 7, with an increased value to our

glycosylation protocol.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Mono- and oligosaccharides bearing a free amino group
(amino sugars) are an important class of sugars, widely
present in nature, with important biological properties.!
Consequently, the realization of effective procedures for
the stereo- and regioselective introduction of an amino func-
tionality on a glycosidic structure may be valuable.

We recently found that the p-allal- 1a and p-galactal-derived
N-mesyl allyl aziridine 18 can be successfully used for the
completely regio- and highly, or even completely, stereo-
selective glycosylation with O-nucleophiles (alcohols, par-
tially protected monosaccharides, and phenol) to afford the
corresponding «-O-glycosides 5o from 1o and B-O-glyco-
sides 5B from 1B (Scheme 1).2 As a consequence of the
conjugate addition involved in this glycosylation process, a
N-mesylamino group, having the same configuration of the
starting aziridine, is regioselectively delivered to the C(4)
of the newly formed pseudoglycal system present in Sot
and 5B. As the N-mesylamino group is not actually the
best choice to have a free amino group by deprotection pro-
cedures, it appeared necessary to introduce on the starting
aziridine a different N-activating group, which could easily
be removed after the glycosylation process had taken place.
Considering that the simple N-acetyl group could not be
used because the corresponding N-acetyl aziridine had

Keywords: Allyl aziridines; Glycals; Glycosylation; Amino sugars.
* Corresponding author. Tel.: +39 050 2219 690; fax: +39 050 2219 660;
e-mail: crotti@farm.unipi.it

0040-4020/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tet.2006.12.069

proved not to be sufficiently reactive,®> our choice fell on
aziridines 2o and 2, which bear the N-(o-nitrobenzenesul-
fonyl) [N-(nosyl)] protecting/activating group, which is eas-
ily removable by the PASH/K,CO; protocol, in accordance
with a SNAr reaction mechanism.* Application of this proto-
col to the -NH-nosyl group present in compounds 6o and
6B, which derive from the glycosylation process, would
give the corresponding free -NH,-containing products 7o
and 7B, as desired (Scheme 1).
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2. Results

As the N-nosyl aziridines 2ot and 23 are not stable, it was
first necessary to prepare their stable precursors, the corre-
sponding N-nosyl-O-mesylate 4ot and 4. The reaction of
the diastereoisomeric frans amino alcohols 9a and 98, ob-
tained from epoxides 82" and 8a, " respectively, with nosyl
chloride (NsCl) (1 equiv) afforded the corresponding N-
nosyl derivatives 10t and 108, which were treated with
MsCl (2 equiv) in CH,Cl,/pyridine to give 4o and 48, re-
spectively. Following a previously reported protocol,’ the
cyclization of 4o and 4 to the corresponding N-nosyl azir-
idines 2o and 23 was carried out with K,COj5 (3 equiv) in
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Scheme 2.
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MeCN, instead of the +~BuOK (1 equiv)/benzene protocol,
which has been routinely used with the corresponding N-
mesyl analogues 3ot and 3.2

To check the efficiency of aziridines 2o and 2 as glycosyl
donors, the possible influence of the N-nosyl group on the
regio- and stereoselectivity, and the applicability of the
deprotection procedure on the N-(nosylamino)-substituted
compounds (6o and 6B) deriving from the glycosylation
process, we examined the regio- and stereochemical behav-
ior of aziridines 2o and 2 in the reaction with alcohols,
partially protected monosaccharides, and phenol (O-nucleo-
philes) (Scheme 2).

Table 1. Regio- and stereoselectivity of the addition reaction of O-nucleophiles to N-nosyl aziridine 2o under protocols A and B*

Bglycoside) 14 R-me
o o 12, R=Et
Bnow ROH BnoU Bno/\© «OR Bno/\LOJ/OR 13, R=iPr
MsO” > K,COs NSHN® 7 NSHN" 7 15, R=alil
N MeCN N 16, R=Bn
NHNs Ns~ 17, see entry 10
4q 2a 110-18a 11p-18p 18, see entry 11
Entry Glycosyl acceptor (ROH) Protocol Time (h) Product(s) Yield (%)
1 MeOH A 3 110 (60%) 95°
11B (40%)
2 MeOH B 3 11a (>99%) 68°
3 EtOH A 3 120 (73%) 89°
12B (27%)
4 EtOH B 3 120 (>99%) 80°
5 i-PrOH A 3 130 (>99%) 98°
6 i-PrOH B 3 13e (>99%) 65¢
7 t+-BuOH A 3 140 (>99%) 92°
8 CH,=CHCH,OH B 3 150 (>99%) 63°
9 PhCH,OH B 3 160 (>99%) 63¢
Me___ Me Me___ Me
HOL_~ Ou
BnO/\@,,n (0)
10 B 3 . 66°
NSHN' 7
Me
(+)-Menthol 170 (>99%)
HO
o o /\RJ
1 0 >< B 3 NsHN' 60°
%o o
1,2;3,5-Di-O-isopropylidene-a-p-glucofuranose 18a (>99%)
# Protocol A: ROH, as the solvent; protocol B: MeCN, as the solvent, ROH=2-3 equiv.

® Crude product.
¢ Purified product (flash chromatography or preparative TLC).
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Table 2. Regio- and stereoselectivity of the addition reaction of O-nucleophiles to N-nosyl aziridine 2B under protocols A and B*

a-glycoside p-glycoside
19, R=Me
o) 0.__.OR 20, R=Et
BnO © | _ROH BnoU Bnow‘ Bnoj/\oJ’OR 21, R= i-Pr
. — + 22, R=t-Bu
MsO' KoCO3 N NsHN 7 NsHN = 23, R= allyl
NHNs MeCN Ns” 24, see entry 10
48 28 190-250 19p-25p 25,R=Ph
Entry Glycosyl acceptor (ROH) Protocol Time (h) Product(s) Yield (%)
1 MeOH A 3 19a (75%) 87°
198 (25%)
2 MeOH B 3 198 (>99%) 63°
3 EtOH A 3 200 (65%) 98°
208 (35%)
4 EtOH B 3 208 (>99%) 71¢
5 i-PrOH A 3 210 (40%) 98"
21B (60%)
6 i-PrOH B 3 218 (>99%) 65°
7 +-BuOH B 3 228 (>99%) 70¢
8 CH,—CHCH,OH B 3 23B (>99%) 75¢
X
0 (o) .
9 g( B 3 ", X 67
/ o. 0 (o]
Ho” © Bno/j/\j
NSHN” 7
Diacetone-p-glucose 24B (>99%)
10 PhOH B 3 258 (>99%) 80°

* Protocol A: ROH, as the solvent; protocol B: MeCN, as the solvent, ROH=2-3 equiv.

® Crude product.
¢ Purified product (flash chromatography or preparative TLC).

Two conceptually different protocols were used. When pos-
sible: (a) a solution of the aziridine precursor, the N-nosyl-O-
mesylate 4ot or 4B in the alcohol (O-nucleophile) was treated
with K,CO3 (3 equiv) (protocol A); (b) the base, K,CO3
(3 equiv), was added to an MeCN solution of 4a or 48,
containing the O-nucleophile (3 equiv) (protocol B). Under
protocol A, the reaction of the in situ-formed aziridine oc-
curred in the presence of a very large amount of nucleophile,
whereas under protocol B, the nucleophile was present only
to a very reduced extent. As glycosyl acceptors, MeOH,
EtOH, i-PrOH, and #-BuOH, were used for both protocols
A and B, whereas allyl alcohol, benzyl alcohol, (+)-menthol,
diacetone-p-glucose,  1,2;3,5-diisopropyliden-o-p-gluco-
furanose, and phenol were used only for protocol B. The
results obtained are shown in Tables 1 and 2.

3. Discussion

The results obtained indicate that the regio- (only the 1,4-
adduct was observed) and stereoselectivity (o-1,4-adduct/
B-1,4-adduct ratio) of N-nosyl aziridines 2o and 2f3 under
protocol A closely resembles those previously obtained
with the corresponding N-mesyl aziridines 1ot and 1P, re-
spectively.? On the contrary, a substantial difference is found
under protocol B between aziridines 1o and 18 and 2ot and
2. With aziridines 1e and 18, the reactions were not com-
pletely stereoselective in all cases and some amounts, up to
15%, of the anomer with an inverted configuration with re-
spect to the aziridine ring carbons (-anomer from aziridine

1o and a-anomer from aziridine 1B) were detected in many
cases.> With the present N-nosyl-substituted aziridines 2a
and 2B, complete stereoselectivity is obtained with all the
O-nucleophiles used and the corresponding a-anomer from
2a and B-anomer from 2P are the only reaction products,
in the stereospecific O-glycosylation process (Tables 1 and
2). It is significant in this respect to compare the results
obtained from the reactions with MeOH and PhOH. In the
reaction with MeOH, the N-mesyl aziridine 1f afforded
a 85:15 mixture of the corresponding methyl B-26 and a-
glycoside 26a. (Scheme 3; Table 3 entry 2),%® whereas in
the reaction with PhOH a 15:45:40 mixture of all the possi-
ble addition products (a-1,4-adduct 27a, B-1,4-adduct 273,
and anti 1,2-adduct 28) was unexpectedly obtained (Scheme
3; Table 3 entry 9).”® The same reactions repeated with
the corresponding N-nosyl aziridine 2B gave a completely
regio- and stereoselective result in both the cases affording
the methyl B-glycoside 198 (reaction with MeOH) and the
phenyl B-glycoside 258 (reaction with PhOH), as the only
respective reaction product (Table 2 entries 2 and 11, or
Table 3 entries 6 and 10).

The complete 1,4-regioselectivity and aziridine ring config-
uration-related stereoselectivity, observed in all the reactions
of the N-nosyl aziridines 2o and 2f with O-nucleophiles,
can be rationalized, as previously admitted for 1o and 18,
by the occurrence of an effective coordination (hydrogen
bond) of the O-nucleophile with the aziridine nitrogen of
2a and 2, followed by a nucleophilic attack on the nearby
C(1) of the allyl aziridine system (routes a and b for 2o and
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OPh

260 R=Me 268 28
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Table 3. Regio- and stereoselectivity of the addition of MeOH and PhOH to N-mesyl aziridine 1B and N-nosyl aziridine 23

Entry Aziridine Generating base Glycosyl acceptor Protocol® Time (h) Product(s) Yield (%)
and solvent

1 1B t+-BuOK/MeOH MeOH A 2 260 (69%) 9P
268 (31%)

2 1B ~-BuOK/benzene MeOH B 2 2600 (15%) 920
268 (85%)

3 1B K,CO;3/MeCN MeOH B 2 268 (>99%) 97¢

4 1B t-BuOK/benzene 18-crown-6 MeOH B 2 260 (22%) 97°¢
268 (78%)

5 28 K,CO5/MeOH MeOH A 3 190 (75%) 87¢
198 (25%)

6 28 K,CO;/MeCN MeOH B 3 198 (>99%) 63¢

7 2B t-BuOK/benzene MeOH B 18 198 (>99%) 86¢

8 2B t-BuOK/benzene 18-crown-6 MeOH B 18 19a (10%) 86"
198 (90%)

9 1B t-BuOK/benzene PhOH?* B 3 27a (15%) 90"
278 (45%)
28 (40%)

10 28 K,CO5/MeCN PhOH B 258 (>99%) 80¢

11 28 t-BuOK/benzene PhOH B 1.5 258 (>99%) 96°

12 1B K,CO;3/MeCN PhOH B 278 (>99%) 89°

# See Tables 1 and 2.

" Ref. 2b.

¢ Crude product.

4 Purified product (flash chromatography or preparative TLC).

2B, respectively, Scheme 4).2 Additionally, in the present
case, the metal ion (K*) probably plays a role in determining
the complete stereoselectivity observed (vide infra).

In this framework, the higher stereoselectivity observed with
the N-nosyl aziridines 2ot and 2 than with the N-mesyl azir-
idines 1ot and 1B could be due to either an intrinsically
higher ability to coordinate with the aziridine nitrogen of
the N-nosyl group than in the mesyl case and/or to the coor-
dinating—chelating ability of K*, which is present in a decid-
edly large amount (6 equiv) in the reaction mixture in which
aziridines 2« and 2f3 are prepared by the K,CO3/MeCN cy-
clization protocol on the N-nosyl-O-mesylates 4o and 48,
respectively (see above). In order to clarify this point, appro-
priate experiments were carried out on aziridines 1f and 28,
generated in situ by inverted procedures (1B by K,COs5/
MeCN cyclization of 3f and 23 by +~-BuOK/benzene cycli-
zation of 4P), in their reaction with MeOH and PhOH under
protocol B (Table 3). While, on the one side, the complete
B-stereoselectivity observed under these conditions in the
reaction of N-mesyl aziridine 1B with MeOH (entry 3 and

Ns & 4H- & R
BnO O CR \NOOBH K
t
Y e (0
s
A’_\/1
p-1,4-adduct 2p'

Scheme 4.

comparison with entry 2, Table 3) unequivocally points to
the importance of the metal cation (K*) on the stereoselectiv-
ity, on the other hand, the complete B-stereoselectivity ob-
tained with N-nosyl aziridine 2B (entry 7 and comparison
with entry 2, Table 3) tends to indicate that the nature of
the arylsulfonyl group is also important. This point is con-
firmed also by the reactions of aziridines 18 and 2, both
generated by +-BuOK/benzene protocol, carried out in the
presence of 18-crown-6, the crown ether specific for K*:
the N-nosyl aziridine 2 affords a better B-stereoselective re-
sult than the N-mesyl derivative 1B (Table 3 entries 4 and 8).
Similar considerations may be made as regards the results
obtained in the reaction with PhOH under different condi-
tions. Particularly significant is the complete 1,4-regio-
and B-stereoselectivity obtained with N-nosyl aziridine 28,
when generated by the +-BuOK/benzene cyclization protocol
(Table 3 entry 11); in the same conditions, the N-mesyl azir-
idine 1P had previously given a non-regioselective (forma-
tion of both 1,2- and 1,4-adduct) and a non-stereoselective
result (formation of both «- and B-anomer) (Table 3 entry
9).2° At the same time, the N-mesyl aziridine 1B, when

OBn
o
O.__.OR
Y route b BnO -
S*N ) X NG~
- Q . b NsHN
Ns" On-%
20’ \R a-1,4-adduct
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Scheme 5.

generated by the K,COz/MeCN-promoted cyclization proto-
col, behaves like the N-nosyl aziridine 23, affording a com-
pletely regio- and stereoselective result (Table 3 entry 12).

The 4-N-(nosylamino)-O-glycosides 11-13a, 160, 17a, and
22-24B were chosen in order to check the applicability of
these pseudoglycals to the deprotection procedure, which
makes use of the PhSH/K,COj5 protocol.* In this way, a solu-
tion of the methyl 4-N-(nosylamino)-a-O-glycoside 11a
(R=Me), taken as an example, in MeCN was treated with
PhSH (3 equiv) in the presence of K,CO5 (4 equiv) (solution
phase conditions): the deprotection reaction is very fast and
is completed in 3 h (conversion>99%, TLC and 'H NMR)
and the corresponding methyl 4-amino-a-O-glycoside 29a
(R=Me) is obtained in pure form (65% yield) after simple
preparative TLC or flash chromatography (Scheme 5). How-
ever, with the aim of eliminating the purification step, an al-
ternative procedure (solid phase conditions) was tested, by
treating a THF solution of glycoside 11a0 (R=Me) with a
PhSH-supported resin (PS-thiophenol).® Unfortunately,
under these conditions, the deprotection process turned out
to be very slow and after several days and/or addition (2-3
times) of an equal amount of fresh resin, the conversion to
29a (R=Me) was not complete and a substantial amount
(20%) of the starting glycoside 11a was still present. As
a consequence, preparative TLC or flash chromatography
was still necessary in order to obtain the pure free amino
derivative 29a (R=Me). Comparison of the two procedures
indicated that the solution phase conditions were to be pre-
ferred and, consequently, they were adopted in all the other
cases [4-N-(nosylamino)-O-glycosides 12at, 130, 160, 1701,
and 22-24f, Scheme 5]. Under these simple conditions, the
corresponding 4-amino-O-glycosides 30-33oc and 34-363
were obtained pure, rapidly (3 h at room temperature), and
in good yields (55-75%) (Scheme 5).

4. Conclusion

In conclusion, our original glycosylation protocol of alco-
hols, partially protected monosaccharides, and phenol by
the diastereoisomeric D-allal and Dp-galactal-derived allyl
N-mesyl aziridines 1ot and 1B has now been substantially
improved by the use of the corresponding N-nosyl aziridines
20 and 2B.%2 On passing from the N-mesyl to the N-nosyl
protecting/activating group, the stereoselectivity of all the
O-glycosylation reactions increases, to the point that the
addition reactions of the new N-nosyl-aziridines 2o and 23
are completely stereoselective, affording the corresponding
4-N-(nosylamino)-2,3-unsaturated-a- (6et) and B-O-glyco-
sides (6f), respectively, in a new uncatalyzed substrate-
dependent stereospecific glycosylation process. The
N-(nosylamino) functionality, regio- and stereoselectively
introduced at C(4) of 6a and 6f3, can be easily deprotected
by the simple PhSH/K,CO; protocol to give the

corresponding 4-amino-2,3-unsaturated-O-glycosides 7o
and 7B, bearing a free amino group in the same position,
with an added value to the final product and to the glycosyl-
ation process itself. The obtained results indicate that the use
of our O-glycosylation process by means of the N-nosyl azir-
idines 2o and 2B, followed by the deprotection protocol,
may constitute a simple and valid tool for the stereospecific
synthesis of 2,3-unsaturated-4-amino sugars.

5. Experimental
5.1. General

All reactions were performed in flame-dried modified
Schlenk (Kjeldahl shape) flasks fitted with a glass stopper or
rubber septa under a positive pressure of argon. Air and/or
moisture-sensitive liquids and solutions were transferred via
syringe. Flash column chromatography was performed with
230-400 mesh silica gel (Macherey—Nagel). Analytical TLC
was performed on Alugram SIL G/UV,s, silica gel sheets
(Macherey—Nagel) with detection by 0.5% phosphomolyb-
dic acid solution in 95% EtOH. MeOH, i-PrOH, -BuOH,
BnOH, and allylic alcohol were distilled from calcium
hydride. EtOH (absolute), phenol, (+)-menthol, 1,2;5,6-di-
O-isopropylidene-a-p-glucofuranose (diacetone-p-glucose),
and anhydrous MeCN over molecular sieves were purchased
from Aldrich and used without purification. 1,2;3,5-di-
O-isopropylidene-a-D-glucofuranose was prepared as re-
ported.” PS-thiophenol resin was purchased from Stepbio.
Epoxides 8% and 8#%° and trans amino alcohol 9a** and
9B2® were prepared as previously described. In the reaction
carried out under protocol A, a solution of trans N-nosyl-O-
mesylates 4o and 4B in anhydrous MeCN was treated with
K,COj; in the presence of the glycosyl acceptor (MeOH,
EtOH, i-PrOH, #+-BuOH, phenol, allylic alcohol, BnOH,
(+)-menthol,  1,2;5,6-di-O-isopropylidene-a-D-glucofura-
nose (diacetone-p-glucose), 1,2;3,5-di-O-isopropylidene-a-
D-glucofuranose (3 equiv). In the reaction carried out under
protocol B, trans N-nosyl-O-mesylates 4o and 4 were
treated with K,CO; in the glycosyl acceptor (MeOH,
EtOH, i-PrOH, +-BuOH), as the solvent.

5.1.1. 6-0O-Benzyl-3-deoxy-3-N-(nosylamino)-p-gulal
(10ct). A solution of amino alcohol 9a (0.117 g,
0.50 mmol) in anhydrous CH,Cl, (1.7 mL) was treated at
room temperature with Et;N (0.076 mL, 0.55 mmol) and
NsCl (0.121 g, 0.55 mmol) and the reaction mixture was
stirred 2 h at the same temperature. Dilution with CH,Cl,
(30 mL) and evaporation of the washed (saturated aqueous
NaHCO3;, 1x5 mL, and saturated aqueous NaCl, 1x5 mL)
organic solution afforded a crude residue (0.214 g) consist-
ing of the N-nosyl derivative 10a, which was subjected to
flash chromatography. Elution with an 1:1 hexane/AcOEt
mixture yielded the N-nosylate 10 (0.108 g, 53% yield),
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pure as a yellow liquid, [a]® +25.2 (¢ 1.04, CHCls):
R/~=0.19 (1:1 hexane/AcOEt); FTIR (neat film) v 3479,
3350, 1650, 1540, 1450, 1360, 1240, 1150, 1020 cm~'. 'H
NMR (CDCl3) 6 8.10-8.18 (m, 1H), 7.82-7.90 (m, 1H),
7.65-7.80 (m, 2H), 7.24-7.43 (m, 5H), 7.00 (d, 1H, J=
7.5 Hz), 5.35-5.42 (m, 1H, NH), 4.62 (d, 1H, J=12.0 Hz),
4.52 (d, 1H, J=12.0 Hz), 4.36 (t, 1H, J=3.7 Hz), 3.84-
3.92 (m, 1H), 3.74 (unresolved d, 2H, J=3.7 Hz), 3.56—
3.81 (m, 2H), 3.18 (br s, 1H, OH). '3*C NMR (CDCls)
6 150.0, 133.6, 133.0, 131.0, 128.7, 128.3, 128.0, 125.6,
925, 774, 742, 69.8, 64.4, 51.2. Anal. Calcd for
C|9H20N207S: C, 5428, H, 479, N, 6.66. Found: C,
54.03; H, 4.65; N, 6.56.

5.1.2. 6-O-Benzyl-3-deoxy-3-N-(nosylamino)-p-glucal
(10B). Following the above described procedure, the
treatment of a solution of amino alcohol 9B (0.310 g,
1.32 mmol) in anhydrous CH,Cl, (4.6 mL) with Et:;N
(0.2 mL, 1.45 mmol) and NsCI (0.322 g, 1.45 mmol) af-
forded, after 3 h stirring at room temperature, a crude residue
(0.560 g) consisting of the N-nosyl derivative 108, which
was subjected to flash chromatography. Elution with an
1:1 hexane/AcOEt mixture yielded the N-nosylate 108
(0.448 g, 80% yield), pure as a yellow liquid, [o]& +3.8 (c
1.07, CHCI3): R~=0.29 (1:1 hexane/AcOEt); FTIR (neat
film) » 3344, 1650, 1540, 1380, 1230, 1180, 1160, 1100,
1050, 1020cm~!. '"H NMR (CDCl;) ¢ 8.17 (dd, 1H,
J=5.8, 3.5 Hz), 791 (dd, 1H, J=6.0, 3.4 Hz), 7.70-7.82
(m, 2H), 7.25-7.40 (m, 5H), 6.35 (dd, 1H, J=5.9, 1.9 Hz),
5.51 (d, 1H, J=7.6 Hz, NH), 4.64 (d, 1H, J=12.1 Hz),
4.55(d, 1H,J=12.1 Hz), 4.41 (dd, 1H, J=5.9, 2.1 Hz), 3.95-
4.10 (m, 1H), 3.74-3.93 (m, 4H), 2.90 (br s, 1H, OH).
13C NMR (CDCls) 6 146.1, 137.6, 134.4, 133.8, 133.1,
131.4, 128.7, 127.8, 125.5, 99.2, 77.6, 73.9, 69.4, 69.1,
55.4. Anal. Calcd for C;oH,9N>,O4S: C, 54.28; H, 4.79; N,
6.66. Found: C, 54.35; H, 4.82; N, 6.74.

5.1.3. 6-0O-Benzyl-3-deoxy-3-N-(nosylamino)-4-O-mesyl-
p-gulal (4a). A solution of the N-nosyl derivative 10o
(2.13 g,5.07 mmol) in anhydrous CH,Cl, (27 mL) was treated
at 0 °C with anhydrous pyridine (1.22 mL, 15.21 mmol) and
MsClI (0.78 mL, 10.14 mmol) and the reaction mixture was
stirred 18 h at 0 °C. Dilution with CH,Cl, (200 mL) and
evaporation of the washed (water, 2x 15 mL) organic solution
afforded a crude residue (2.9 g) consisting of trans N-nosyl-O-
mesyl derivative 4o, which was subjected to flash chromato-
graphy. Elution with a 4:3:3 hexane/CH,Cl,/AcOEt mixture
yielded the trans N-nosyl-O-mesylate 4ot (1.26 g, 50% yield),
pure as a pale yellow solid, mp 102-105 °C; [a]% +89.3 (¢
0.61, CHCl3): R~=0.33 (1:1 hexane/AcOEt); FTIR (Nujol)
v 3319, 1647, 1543, 1371, 1251, 1178 cm~'. 'H NMR
(CDCly) 6 8.22-8.31 (m, 1H), 7.61-7.92 (m, 3H), 7.23-7.43
(m, 5H), 6.57 (d, 1H, J=5.9 Hz), 539 (d, 1H, J=4.9 Hz,
NH), 4.96-5.03 (m, 1H), 4.63 (td, 1H, J=5.9, 1.7 Hz), 4.52
(s, 2H), 4.22 (t, 1H, J=6.8 Hz), 3.96-4.05 (m, 1H), 3.74 (dd,
1H, J=9.8, 6.0 Hz), 3.64 (dd, 1H, J=9.8, 7.5 Hz), 3.03 (s,
3H). 13C NMR (CDCl3) 6 148.2, 137.4, 134.3, 133.4, 132.2,
128.7, 128.3, 125.7, 95.5, 73.9, 73.8, 70.0, 67.4, 47.7, 37.9.
Anal. Calcd for C20H22N20982: C, 4819, H, 445, N, 5.62.
Found: C, 48.31; H, 4.49; N, 5.70.

5.1.4. 6-0O-Benzyl-3-deoxy-3-N-(nosylamino)-4-O-mesyl-
p-glucal (4B). Following the above described procedure,

the treatment of a solution of the N-nosyl derivative 103
(0.63 g, 1.50 mmol) in anhydrous CH,Cl, (8 mL) with anhy-
drous pyridine (0.36 mL, 4.5 mmol) and MsCl (0.23 mL,
3.0 mmol) afforded, after 18 h stirring at 0 °C, a crude residue
(1.05 g) consisting of the trans N-nosyl-O-mesyl derivative
4B, which was subjected to flash chromatography. Elution
with a 4:3:3 hexane/CH,Cl,/AcOEt mixture yielded the trans
N-nosyl-O-mesylate 48 (0.38 g, 51% yield), as a pale yellow
solid, mp 3941 °C; [a]5 —54.5 (c 0.52, CHCl3): R=0.32
(1:1 hexane/AcOEt); FTIR (Nujol) » 3310, 1653, 1541,
1466, 1351 cm~!. 'H NMR (CDCl;) 6 8.11-8.21 (m, 1H),
7.85-7.94 (m, 1H), 7.71-7.83 (m, 2H), 7.21-7.45 (m, 5H),
6.33 (dd, 1H, J=6.0, 1.7 Hz), 5.88 (d, 1H, J=8.9 Hz, NH),
4.97 (dd, 1H, J=7.9, 6.8 Hz), 4.66 (d, 1H, J=11.7 Hz), 4.55
(d, 1H, J=11.7 Hz), 4.12-4.41 (m, 3H), 3.84 (dd, 1H,
J=11.5, 3.1 Hz), 3.77 (dd, 1H, J=11.5, 4.0 Hz), 3.21 (s,
3H). *C NMR (CDCl3) 6 146.3, 137.4, 134.3, 134.2,
133.4, 130.9, 128.6, 128.2, 128.0, 125.7, 97.9, 76.1, 75.6,
73.8, 68.1, 51.9, 39.6. Anal. Calcd for C;0HoN,00S,: C,
48.19; H, 4.45; N, 5.62. Found: C, 47.98; H, 4.39; N, 5.56.

5.1.5. Glycosylation of alcohols, partially protected
monosaccharides, and phenol in anhydrous MeCN by
the in situ-formed allyl aziridines 2o and 28 (profocol B).

5.1.5.1. Reaction of aziridine 2o with MeOH in anhy-
drous MeCN. Typical procedure (protocol B): a solution
of trans N-nosyl-O-mesylate 4o (0.032 g, 0.064 mmol)
in anhydrous MeCN (3.6 mL) was treated with K,CO3
(0.026 g, 0.192 mmol, 3 equiv) in the presence of MeOH
(0.008 mL, 0.192 mmol, 3 equiv) and the reaction mixture
was stirred at room temperature for 3 h. The solution was
partitioned between Et,O (15 mL) and brine (5 mL), and
the aqueous layer was further extracted with Et,O
(2x10 mL). Evaporation of the combined organic extracts
afforded a clean crude product (0.027 g, 97% yield) consist-
ing of practically pure methyl glycoside 11ac (‘"H NMR),
which was subjected to flash chromatography. Elution
with an 1:1 hexane/AcOEt mixture afforded pure methyl
6-0-(benzyl)-2,3,4-trideoxy-4-N-(nosylamino)-a-p-erythro-
hex-2-enopyranoside (11at) (0.019 g, 68% yield), as a yellow
liquid, [a]& +104.2 (¢ 0.80, CHCl3): R/=0.30 (1:1 hexane/
AcOEt); FTIR (neat film) v 3329, 1732, 1541, 1456, 1363,
1288, 1170, 1072 cm™'. '"H NMR (CDCls) 6 8.06-8.16
(m, 1H), 7.80-7.89 (m, 1H), 7.72 (td, 1H, J=7.5, 1.8 Hz),
7.65 (td, 1H, J=7.5, 1.8 Hz), 7.23-7.40 (m, 5SH), 5.75 (dt,
1H, J=10.1, 2.6 Hz), 5.51 (d, 1H, J=10.1 Hz), 5.39 (d,
1H, J/=9.4 Hz, NH), 4.85-4.93 (m, 1H, H-1), 4.52 (s, 2H),
4.24-4.40 (m, 1H), 3.81-3.92 (m, 1H), 3.65-3.80 (m, 2H),
3.42 (s, 3H). *C NMR (CDCl3) 6 147.9, 138.2, 134.4,
133.9, 133.1, 131.0, 130.1, 128.3, 128.2, 127.9, 127.7,
125.6, 95.2, 73.7, 69.4, 68.8, 56.1, 48.9. Anal. Calcd for
C20H22N207SI C, 5529, H, 510, N, 6.45. Found: C,
55.35; H, 5.24; N, 6.51.

5.1.5.2. Reaction of aziridine 2« with 1,2;3,5-di-O-iso-
propylidene-a-p-glucofuranose in anhydrous MeCN
(protocol B). Following the above described typical proce-
dure, the treatment of a solution of trans N-nosyl-O-mesyl-
ate 4o (0.035 g, 0.070 mmol) in anhydrous MeCN (4 mL)
with K,COj5 (0.029 g, 0.210 mmol, 3 equiv) in the presence
of 1,2;3,5-di-O-isopropylidene-a-p-glucofuranose (0.036 g,
0.140 mmol, 2 equiv) afforded, after 3 h stirring at room
temperature, a crude product consisting of a mixture of
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disaccharide 18a and unreacted monosaccharide ("H NMR),
which was subjected to flash chromatography. Elution with
a 9:1 CH,CIl,/AcOEt mixture afforded 3-O-[6-O-benzyl-
2,3,4-trideoxy-4-N-(nosylamino)-a-p-erythro-hex-2-eno-
pyranosyl]-1,2;3,5-di-O-isopropylidene-o-p-glucofuranose
(18a) (0.028 g, 60% yield), as a yellow liquid, [a]3 +95.9
(c 1.58, CHCI3): R=0.29 (7:3 hexane/acetone); FTIR (neat
film) » 3290, 1732, 1541, 1456, 1373, 1242, 1168, 1076,
1026 cm~!. 'H NMR (CDCl;) 6 8.09 (dd, 1H, J=7.2,
2.0 Hz), 7.84 (dd, 1H, J=7.5, 1.6 Hz), 7.70 (td, 1H, J=7.4,
1.7 Hz), 7.63 (td, 1H, J=7.4, 1.6 Hz), 7.23-7.40 (m, 5H),
5.97 (d, 1H, J=3.7Hz), 5.76 (dt, 1H, J=10.1, 2.6 Hz),
5.52 (d, 1H, J=10.1 Hz), 5.34 (d, 1H, J=9.2 Hz, NH),
5.04 (br s, 1H, H-1), 4.56 (d, 1H, J=3.7 Hz), 4.49 (s, 2H),
4.26-4.43 (m, 2H), 4.18 (d, 1H, J=3.8 Hz), 3.73-3.96 (m,
4H), 3.69 (unresolved d, 2H, J=2.9 Hz), 1.48 (s, 3H), 1.33
(s, 9H). '3C NMR (CDCls) 6 147.9, 138.2, 134.5, 133.9,
133.2, 131.1, 130.1, 128.5, 128.3, 127.9, 127.7, 125.6,
112.3, 106.5, 101.0, 92.2, 84.1, 79.6, 75.1, 73.7, 71.4,
69.4, 68.8, 68.6, 48.7, 27.4, 26.7, 24.2. Anal. Calcd for
C3]H38N20]2S: C, 5618, H, 578, N, 4.23. Found: C,
56.35; H, 5.85; N, 4.41.

5.1.5.3. Reaction of aziridine 23 with MeOH in anhy-
drous MeCN (protocol B). Following the above described
typical procedure, the treatment of a solution of frans N-
nosyl-O-mesylate 48 (0.031 g, 0.062 mmol) in anhydrous
MeCN (3.5mL) with K,CO; (0.026 g, 0.186 mmol,
3 equiv) in the presence of MeOH (0.008 mL, 0.186 mmol,
3 equiv) afforded, after 3 h stirring at room temperature,
a crude product (0.024 g, 90% yield) consisting of practi-
cally pure methyl glycoside 198 (‘H NMR), which was sub-
jected to flash chromatography. Elution with an 1:1 hexane/
AcOEt mixture afforded pure methyl 6-O-(benzyl)-2,3,4-
trideoxy-4-N-(nosylamino)-B-pD-threo-hex-2-enopyranoside
(19B) (0.017 g, 63% yield), as a yellow liquid, [a]3 —136.7
(c 0.90, CHCI3): R~=0.28 (1:1 hexane/AcOEt); FTIR (neat
film) v 3354, 1541, 1456, 1417, 1396, 1168, 1120,
1053 cm~!. '"H NMR (CDCls) 6 8.09-8.16 (m, 1H), 7.81—
7.88 (m, 1H), 7.60-7.76 (m, 2H), 7.24-7.39 (m, 5H), 5.73
(s, 2H), 5.71 (d, 1H, J=7.7Hz, NH), 5.00 (d, 1H,
J=1.7 Hz, H-1), 4.45 (s, 2H), 3.88-4.09 (m, 2H), 3.68 (dd,
1H, J=10.1, 5.6 Hz), 3.62 (dd, 1H, J=10.1, 6.3 Hz), 3.47
(s, 3H). '3C NMR (CDCl3) ¢ 147.9, 138.1, 135.4, 133.7,
133.1, 131.0, 130.5, 128.9, 128.6, 127.9, 125.5, 98.4, 73.6,
73.5, 69.7, 55.6, 48.7. Anal. Calcd for C,oH,,N,0,S: C,
55.29; H, 5.10; N, 6.45. Found: C, 55.17; H, 4.89; N, 6.32.

5.1.5.4. Reaction of aziridine 28 with 1,2;5,6-di-O-iso-
propylidene-a-p-glucofuranose (diacetone-np-glucose) in
anhydrous MeCN (protocol B). Following the above
described typical procedure, the treatment of a solution
of N-nosyl-O-mesylate 4 (0.028 g, 0.056 mmol) in anhy-
drous MeCN (3.2 mL) with K,CO;5 (0.023 g, 0.168 mmol,
3 equiv) in the presence of diacetone-p-glucose (0.029 g,
0.112 mmol, 2 equiv) afforded, after 3 h stirring at room tem-
perature, a crude product consisting of a mixture of disaccha-
ride 24P and unreacted monosaccharide ('"H NMR), which
was subjected to flash chromatography. Elution with a 7:3
hexane/acetone mixture afforded 3-O-[6-O-benzyl-2,3,4-tri-
deoxy-4-N-(nosylamino)-B-p-threo-hex-2-enopyranosyl]-1,
2;5,6-di-O-isopropylidene-a-p-glucofuranose (243) (0.025 g,
67% yield), as a yellow liquid, [o]Z —33.6 (¢ 0.33, CHCl,):

Ry=0.16 (7:3 hexane/acetone); FTIR (neat film) » 3358,
1541, 1413, 1261, 1070 cm~!. 'H NMR (CDCl5) 6 8.09-
8.16 (m, 1H), 7.79-7.87 (m, 1H), 7.69 (td, 1H, J=74,
2.0 Hz), 7.62 (td, 1H, J=8.6, 3.0 Hz), 7.23-7.41 (m, 5H),
5.84-5.95 (m, 3H), 5.71 (d, 1H, J=10.2 Hz), 5.32 (d, 1H,
J=1.3Hz, H-1), 4.61 (d, 1H, J=3.8 Hz), 4.41 (s, 2H),
4.25-4.35 (m, 2H), 4.19 (dd, 1H, J=6.8, 3.3 Hz), 3.89-4.11
(m, 4H), 3.61 (d, 2H, J=5.9 Hz), 1.50 (s, 3H), 1.39 (s, 3H),
1.34 (s, 3H), 1.32 (s, 3H). '3C NMR (CDCl3) ¢ 148.0,
137.9, 133.6, 132.9, 130.5, 130.4, 130.3, 128.6, 128.0,
127.8, 125.5, 112.2, 109.1, 105.3, 96.2, 83.8, 80.5, 77.8,
73.7, 73.6, 72.8, 69.3, 67.0, 48.3, 27.1, 27.0, 26.5, 25.5.
Anal. Calcd for C31H38N201282 C, 5618, H, 578, N, 4.23.
Found: C, 56.27; H, 591; N, 4.31.

5.1.6. Glycosylation of alcohols by the in situ-formed allyl
aziridines 2« and 2, in alcohol as the solvent/nucleo-
phile (protocol A).

5.1.6.1. Reaction of aziridine 2oc with MeOH as the
solvent/nucleophile. Typical procedure (protocol A): a solu-
tion of trans N-nosyl-O-mesylate 4a (0.040 g, 0.080 mmol)
in anhydrous MeOH (4.4 mL) was treated with K,COs3
(0.033 g, 0.240 mmol, 3 equiv) and the reaction mixture
was stirred at room temperature for 2 h. The solution was
partitioned between Et,O (15 mL) and brine (5 mL), and
the aqueous layer was further extracted with Et,O
(2x10 mL). Evaporation of the combined washed (brine) or-
ganic extracts afforded a crude reaction product (0.033 g,
95% yield) consisting of a 60:40 mixture of methyl glyco-
sides 11at and 118 ("H NMR), which was subjected to pre-
parative TLC using a 6:4 CH,Cl,/i-Pr,O mixture, as the
eluant (3 runs). Extraction of the two most intense bands
(the faster moving band contained 11B) afforded pure 11a
(0.016 g, 46% yield) and methyl 6-O-benzyl-2,3,4-tri-
deoxy-4-N-(nosylamino)--p-erythro-hex-2-enopyranoside
(11B) (0.011 g, 31% yield), as a yellow liquid, [a]& +24.1 (c
0.98, CHCl3); FTIR (neat film) » 3325, 1537, 1452, 1417,
1357, 1261, 1167, 1080 cm~!. '"H NMR (CDCls) § 8.05
(dd, 1H, J=7.8, 1.3 Hz), 7.84 (dd, 1H, J=7.9, 1.2 Hz),
7.68 (td, 1H, J=7.7, 1.4 Hz), 7.49 (td, 1H, J=7.7, 1.3 Hz),
7.24-7.42 (m, 5H), 5.82 (d, 1H, J=11.0 Hz), 5.72 (dd, 1H,
J=11.0, 3.8 Hz), 5.58 (d, 1H, J=9.3 Hz, NH), 4.88-4.93
(m, 1H, H-1), 4.47 (s, 2H), 4.04-4.19 (m, 1H), 3.63-3.88
(m, 2H), 3.57 (dd, 1H, J=9.9, 5.1 Hz), 3.41 (s, 3H). 13C
NMR (CDCls) 6 148.0, 138.3, 134.7, 133.8, 133.1, 131.3,
129.5, 128.6, 127.9, 126.9, 125.5, 95.6, 75.1, 73.5, 69.9,
55.6, 48.1. Anal. Caled for CyyH,N,0,;S: C, 55.29; H,
5.1; N, 6.45. Found: C, 55.12; H, 5.36; N, 6.32.

5.1.6.2. Reaction of aziridine 23 with MeOH as the
solvent/nucleophile (protocol A). Following the above
described typical procedure, the treatment of a solution
of trans N-nosyl-O-mesylate 48 (0.033 g, 0.066 mmol) in
anhydrous MeOH (3.7mL) with K,CO5; (0.027 g,
0.198 mmol, 3 equiv) afforded, after 2 h stirring at room
temperature a crude product (0.025 g, 87% yield) consisting
of a 75:25 mixture of methyl glycosides 19o and 198 (‘H
NMR), which proved to be inseparable under any chromato-
graphic conditions.

5.1.7. Deprotection of 4-N-nosyl-O-glycoside 11a by
the PhSH/K,COj; protocol. Typical procedure: a solution
of 4-N-nosyl-O-glycoside 11a (0.016 g, 0.037 mmol) in
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anhydrous MeCN (0.9 mL) was treated with K,COj;
(0.020 g, 0.148 mmol, 4 equiv) in the presence of PhSH
(0.011 mL, 0.111 mmol, 3 equiv) and the resulting reaction
mixture was stirred 3 h at room temperature. The solution
was diluted with AcOEt (20 mL). The organic solution
was filtered through a short Celite pad and evaporated to
afford a crude product consisting of a mixture of 4-amino-
O-glycoside 29a and PhSH ('H NMR), which was subjec-
ted to preparative TLC using an 1:1:0.1 CH,Cl,/AcOEt/
MeOH mixture, as the eluant. Extraction of the slower
moving band afforded methyl 6-O-(benzyl)-2,3,4-trideoxy-
4-amino-a.-D-erythro-hex-2-enopyranoside (29a) (0.006 g,
65% yield), as a yellow liquid, [a]E +46.2 (¢ 0.49,
CHCl3): R~=0.12 (1:1:0.1 CH,Cl,/AcOEt/MeOH); FTIR
(neat film) » 3360, 3296, 1454, 1396, 1261, 1097,
1057 cm™'. '"H NMR (CDCl3) 6 7.27-7.41 (m, 5H), 5.88
(d, 1H, J=10.1 Hz), 5.74 (dt, 1H, J=10.1, 2.4 Hz), 4.87-
4.93 (m, 1H, H-1), 4.69 (d, 1H, J=12.2 Hz), 4.55 (d, 1H,
J=12.2 Hz), 3.71-3.77 (m, 2H), 3.54-3.66 (m, 1H), 3.38-
3.52 (m, 1H), 3.44 (s, 3H), 1.36-1.56 (m, 2H, NH,). 1*C
NMR (CDCl3) 6 1354, 128.6, 127.9, 125.5, 95.4, 73.6,
72.8, 70.3, 55.8, 47.1. Anal. Caled for C4HoNO3: C,
67.45; H, 7.68; N, 5.62. Found: C, 67.61; H, 7.78; N, 5.34.

5.1.8. Deprotection of 4-N-nosyl-O-glycoside 11a by the
PS-thiophenol resin protocol.® A solution of 4-N-nosyl-
O-glycoside 11a (0.030 g, 0.070 mmol) in anhydrous THF
(0.2 mL) was treated with Cs,CO3 (0.072 g, 0.22 mmol)
and PS-thiophenol resin (0.040 g, 0.08 mmol). This amount
of resin had been previously treated by shaking for 30 min in
a sealed vial with 1.6 mL of a 0.7 M solution of PPhs in
anhydrous deoxygenated THF. The resin was filtered on a
sintered glass, washed with anhydrous THF (30 mL), and
used immediately without drying. The reaction mixture
was shaken in a sealed vial at room temperature for 8 h. Addi-
tional PS-thiophenol resin was added (0.040 g, 0.08 mmol)
and the reaction mixture was shaken again for 16 h. The re-
action mixture was filtered and the solid was washed several
times with CH,Cl, (20 mL). Evaporation of the combined
organic extracts afforded a crude product consisting of an
80:20 mixture of 4-amino-O-glycoside 29o and unreacted
4-N-nosyl-O-glycoside 11ac ('"H NMR), which was sub-
jected to preparative TLC using an 1:1 hexane/AcOEt mix-
ture, as the eluant. Extraction of the two most intense bands
(the slower moving band contained 29at) afforded pure 29a
(0.012 g, 70% yield) and 11a (0.004 g, 15% yield).

In other runs, even if operating under the same experimental
conditions, the starting 4-N-nosyl-O-glycoside 11a was re-
covered completely unreacted.
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